TOPOLOGY-IV M.MATH-II MID-TERM EXAM

Total 30 Marks

(1) Show that $M \times N$ is orientable if and only if M and N are orientable.	(4 marks)
(2) Show that TM is orientable as a smooth manifold.	(5 marks)
(3) Let S^n be the standard unit sphere in \mathbb{R}^{n+1} .	
(a) Give a no-where vanishing section of the tangent bundle $T(S^3)$.	(2 marks)
(b) Show that $T(S^n) \oplus \epsilon^1$ is a trivial bundle, where ϵ^1 is a trivial bundle of rank 1. (4 marks)	
(c) Show that $T(S^3 \times S^n)$ is a trivial bundle.	(5 marks)

(4) Let W and Y are compact and oriented manifolds and let $k = \dim Y = \dim W - 1$. If $X = \partial W$ and $f: X \to Y$ extends smoothly to all of W, then

$$\int_X f^* \omega = 0 \tag{5 marks}$$

(5) Let N be a domain with boundary in a m-dimensional compact oriented manifold M. Show that the map

$$\int_{\partial N} : H^{m-1}(M) \to \mathbb{R}$$

is a zero map.

for every k-form ω on Y.

(5 marks)